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Abstract

Highly detailed natural scenes and objects tend to be perceived as being realistic, while repeated parts and patterns
decrease their realism. To avoid scenes with noticeable repeated elements, we introduce the notion of ’more of the
same’, which focuses on the task of generating additional similar instances from a small set of exemplars. The small
number of exemplars, as well as their diversity and detailed structural texture, makes it difficult to apply statistical
methods, or other machine learning tools, and thus more specialized tools need to be used. In this paper, we focus on
generating a rich variation of highly detailed realistic leaves from just a handful set of examples.

The method that we present does use only minimal domain specific knowledge and requires only minimal user assis-
tance applied on a single training leaf exemplar to extract and separate structural layers. The knowledge from one leaf
is then transferred to the other exemplars by a novel color/spatial layer inducing algorithm. The premise of structural
layering is that each set of layers is simple enough to be synthesized separately and then composed into a novel leaf
structural texture. This composition also allows the synthesis of slightly modified layers from the set of examples,
which can generate a large set of differently looking leaves. We demonstrate numerous results of realistically looking
leaves produced by our method from a small set of leaves.
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1. Introduction

One of the prominent tasks in computer graphics is to
synthesize photorealistic scenes. One factor that di-
rectly affects the realism of a natural object or scene is
richness of their details. Highly detailed objects tend to
be perceived as being realistic, provided that there are
no noticeable repetitions. For example, crowds, trees,
and a brick wall, are objects that consist of a large num-
ber of similar parts. The realistic presentation of such
objects increases as a function of the variety of their
parts, while repeated parts and patterns decrease their
realism.

In recent years considerable research effort has been di-
rected at establishing techniques for generation of non-
repetitive textures from a given example [1, 2, 3, 4, 5,
6, 7]. These techniques work well for stationary tex-
tures, but they do not handle structural variation cou-
pled within the texture. For example, the leaf in Figure
1(a) contains an internal structure of its veins, which is
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tightly coupled to the contour of the leaf’s shape. Fur-
thermore, the leaf’s texture is non-stationary as it is spa-
tially coupled to the leaf’s internal structure.

In this paper we introduce a technique that synthesizes
a variety of structural textures from a given set of exam-
ples. In particular, we focus on the synthesis of leaves
from a small set of examples. The method makes no
special assumption about the nature of leaves and it is
generic enough to be applied to other objects.

The challenging problem we address in this paper is in
a larger problem context, which we name ’more of the
same’, focusing on generation of additional similar in-
stances from a small set of exemplars. The small num-
ber of objects, as well as their diversity and delicate tex-
tures, makes it difficult to construct the detailed struc-
tural texture using statistical methods, or other machine
learning tools, and thus more specialized tools need to
be used. In our case, we focus on generating realistic
texture and planar shape of leaves.

A recent work in this context is the study of Baxter
and Anjyo [8] which is motivated by similar goals as
ours. They introduce a Latent Doodle Space that al-
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Figure 1: A rich variation of tree leaves synthesized from a small set of exemplars using structural layering.

lows composing a variety of new simple line drawing
examples consisting of a set of line scribbles. The focus
of their work is the matching and mixing of the object-
space lines. Extending their work to accommodate tex-
tures and structures in image-space is not trivial. Work-
ing in image-space, which is the focus of our work, al-
lows dealing with real-world objects and synthesizing
realistic looking entities. Most of the work on gener-
ative modeling has been applied in object-space. The
model construction usually utilizes either domain spe-
cific knowledge or statistical knowledge generated by
a sufficiently large and dense number of examples. A
notable example of this type of work is introduced by
Blanz and Vetter [9]. In their work, they derive a Mor-
phable Face Model by transforming the shape and tex-
ture of over 200 examples into a vector space represen-
tation. New faces and expressions are modeled by form-
ing linear combinations of the prototypes. Following
studies have implemented similar solutions for different
domains such as animal 3D skeletons and other objects
[10, 11]. Contrary to this type of work, here, the detailed
structural texture and its composition structure prohibits
determining statistically valid texture model, especially
without deep understanding of the domain knowledge.
Instead, we learn from a small set of exemplars.

2. Related work

2.1. Texture synthesis

Texture synthesis is a common technique to generate
textures which are similar to given exemplar [3, 1, 4].
Instead of modeling the texture, they fuse patches from
the given example, allowing successful synthesis of rich
and complex textures. The strength of these example
based approaches is that they avoid the difficult task of
analysis. These methods are mainly effective for the
synthesis of stationary textures, and their generalization

to spatially-varying textures is hard [12]. [13] includes
some analysis and specifically aim at the generation of a
variety of textures from a given example. They arrange
the extracted texture patches into layers, and uses warp-
ing to generate more variability in the result. Rosen-
berger et al. [14] synthesize inhomogeneous textures
by decomposing the texture of the exemplar into several
layers, where the visible parts of each layer are occupied
by a more homogeneous texture.

Analysis of general textures is conceptually similar to
the general segmentation problem, and similarly to seg-
mentation, reasonable results requires the assistance of
the user. Our analysis of the leaf textures is similar
to the work of [15] on image segmentation by exam-
ple. They constructed a non-parametric representation
of the segmented example by patch-based representa-
tives, allowing the segmentation of a similar image into
complex semantic regions containing a large variety of
colors and textures. Recent studies in this category in-
cludes the synthesis of urban street maps from a small
given set of map examples, which preserve the urban
global structure [16]. Another relevant segmentation by
example is introduced by Borenstein and Ullman [17].
There, they segment an object in an image, based on
a large set of pre-segmented images, all from the same
family of specific objects. In our work, we use only on
minimal domain specific knowledge for the determina-
tion of the layers, and are looking for a fine and detailed
decomposition of an image into layers, without having
a large number of training examples.

2.2. Leaves synthesis

During the last two decades a special research inter-
est has been focused on generating realistically look-
ing plants in 3D environments: A wide set of solu-
tions where suggested for building tree models, which
include the trunk, branches, and crown general shape,
by tracking botanical models or other construction rules
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[18, 19]. These techniques produce excellent results
however generating realistic result for several tree types,
requires labor intensive, manual effort in the prepara-
tion and configuration of the rule set. Moreover, it is
hard to tune these methods to produce tree imperfec-
tions and to control the resulting tree specific shape. To
overcome these obstacles, recent methods offer an easy
example-based techniques for generating a realistically
looking tree models, based on a small number of tree
photographs [20, 21, 22, 23].

The generation of leaves patterns had been a special-
ized research field suggesting ways to model the leaves
textures and shapes. Photorealistic results were demon-
strated by techniques which offered a way to botanicaly
model the evolution of the leaves venation [24]. How-
ever, those methods also suffer from the same prob-
lems as the tree modeling techniques, which are do-
main expertise and significant manual effort. Another
venue for the generation of leaf textures, has been by
using texture synthesis techniques, which aimed on gen-
erating non-repetitive textures from a given example
[1, 3, 4, 5]. These techniques generate satisfactory re-
sults for stochastic textures but cannot deal with struc-
tural textures which contain global structures such as
the ones in leaves. We introduce a method which ad-
dress the synthesis of the structural textures and allows
to produce many realistically looking leaves by using
small number of examples and minimal user interac-
tion. Our method is generic and almost does not rely
on any botanic knowledge. In a sense, our method ex-
tends the work of Shen and his colleagues [13], where
they synthesize general textures, by segmenting a sam-
ple texture to its main components. The segments gen-
erate a set of layers, one for each texture class, which
are later combined. In our case, we use the similarity of
the leaves to extract the structure information and to au-
tomatically infer the shape of these layers. The results
of our method (as shown in Figure 1) assist in generat-
ing realistic complete tree models including their leaves
details, based on real examples and with minimal user
interactions.

Our approach is motivated by the observation that leaf
structure consists of a small number of layers, each of
which includes a texture with certain characteristics that
can vary from being strongly structured, to being spa-
tially varied, or even completely stochastic. These lay-
ers can be decomposed from a set of exemplars and
mixed between instances to generate a richer set of vari-
ations. Following this notion, our method consists of
two parts: decomposition and synthesis. The decompo-
sition of a structural texture into simpler and control-

(a) (b)

Figure 2: Automatic registration of the examples yields
a global alignment, with several local mismatches. (a)
shows the non-rigid registration of two leaves with their
keypoints shown in red and blue. (b) shows 4 overlayed
leaves after the alignment step.

lable layers with a consistent characteristic is an ex-
tremely difficult task as it requires image understand-
ing. A user guided approach with minimal effort on a
single training exemplar leaf provides sufficient hints
for decomposing these structures. Next, our novel au-
tomatic technique of inferring the layers of a given in-
stance from the layers of an example generates a set of
layers from all leaves. To synthesize novel instances,
we generate convex combinations of the warping fields,
warping the layers and composing them into a coher-
ent novel instance. This composition method allows the
generation of a diverse set of examples, which can then
be used to enrich the realism of the generated scene.

3. Analysis

Given a leaf image, the task of separating it into lay-
ers is closely related to the problem of image segmenta-
tion into parts. A typical image segmentation technique,
aims at identifying homogeneous regions in an image
that correspond to semantically meaningful regions in
an image. Here, the layers are meant to differentiate
the various structures and texture parts. Nevertheless,
the fundamental difficulty remains extremely hard as, in
both cases, a proper segmentation or layering requires
image understanding and parts recognition.

Our method segments a set of example leaves into
meaningful layers provided a single training leaf that is
easily layered by the user. By learning the given train-
ing image, the rest of the examples are automatically
analyzed and decomposed into meaningful layers by in-
ferring the layers of the training image. This inference
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(a) (b) (c)

Figure 3: Calculating layer similarity. High potential layer regions are marked in dark red. (a) Color histogram
similarity heat map. (b) Structure distance similarity heat map. (c) Resulting similarity measurement for the veins.

task is described in Section 4. The layers of the training
leaf image are defined by the user with a set of scrib-
bles. Next we apply the following steps on every leaf
from the given exemplar set: We first align the exem-
plar leaf with the training leaf. The alignment is done
by a non-rigid registration technique followed by a tex-
ture correction step. Following this, we perform a layer
induction (Section 4) on one layer at a time, remove the
layer pixels from the residual image, and generate the
novel image by layers synthesis (Section 5).

To align the exemplar leaf to the training leaf, we apply
the non-rigid unsupervised registration algorithm intro-
duced by Chui and Rangarajan [25]. The registration
is applied to a sparse subset of leaf keypoints. We use
a sparse set of pixels from the shape strong edges as
these keypoints, by applying a Sobel edge detector over
a bilateral filtered image. In our setting, around 100
points were enough to convey the general shape in the
leaf. An example of the resulting keypoint matching is
shown in Figure 2 (a) . The resulting registration gener-
ates a global warp that aligns the example and training
leaves and is also used later in the synthesis phase. The
alignment is imperfect and may tolerate small (even up
to 50 pixels) mismatches. Additional efforts to gain a
more precise registration usually cause overfitting arti-
facts, and require labor-intensive and domain-specific
efforts in defining the keypoints. This rough alignment
is sufficient for our needs as it brings the examples close
enough to apply a reasonable analysis. An example of
several registered leaves are shown in Figure 2 (b).

To counteract the effects of the previous registration, we
apply a texture synthesis which fixes the artifacts gen-
erated in the extremely warped regions. The technique
is based on replacement of warped patches with similar
patches taken from the original image, in the spirit of
the technique of Fang and Hart [26].

(a) (b)

(c) (d)

Figure 4: Naive transformations of the user layer in-
duced to other leaves do not provide satisfactory results.
(a) highlights the user vein layer selection. (b) high-
lights regions with similar color distribution. Note the
level of false negatives, and missing regions in the in-
duction. (c) highlights the user selection naively copied
to another image demonstrating the registration mis-
matches, and (d) presents a zoom-in on the registration
mismatch.
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4. Layer induction

Given a set of training leaf layers, and an aligned leaf
example, the problem of inducing similar layers for the
given example is difficult. Clearly, a similar layer can-
not be based on color similarity alone, since the col-
ors are not good descriptors to well define the layers.
This fact is evident in Figure 4 (b). Note also that the
structured layers in the two leaves after registration are
spatially similar but definitely not the same, as shown
in Figure 4 (c,d). We therefore introduce a technique
for inducing the layers from the training leaf image to
the example image by considering a fusion of color and
spatial similarity.

We denote with c the set of pixels marked by the user
as representing a given layer over a training leaf image
t. A color histogram of a region v is denoted with H(v).
Hence, the color histogram of the set c is denoted by
H(c). Now, given an example leaf image e, one can de-
fine an analogous layer in e with respect to given layer
in t by simply measuring a distance S (x, c) between the
color distribution of a small neighborhood around each
pixel x in e (denoted by Ne(x)) and the colors distribu-
tion of c:

S e(x, c) = ‖H(c),H(Ne(x))‖m (1)

where ‖ · ‖m is the normalized earth movers distance
(EMD) between histograms (0 indicates a match, and 1
indicates maximally different histograms).

Such a histogram distance is not sufficient to classify
the pixels of the example leaf image and create a rea-
sonable analogous layer, since the colors solely do not
provide sufficiently discriminative measures. This is
demonstrated in Figure 4 (b), where colors similar to the
ones defined by the user to describe the veins of the leaf,
only partially defines the veins of the example leaf im-
age, and also highlight regions which are clearly not re-
lated to the veins in the example leaf image. Therefore,
the similarity measure needs to account for the spatial
distance from the structure defined by the user:

D(x, c) = λ · F (x, c) + S e (x, c) (2)

where F(x, c) measures the spatial distance between a
pixel x in e and the user selection set c. As such, the
F(x, c) is motivated by a normalized distance transform
of the set c in the leaf image (‖x, c‖L2/max (‖x, c‖L2)).

Linear combination of the spatial and color similarity,
where F(x, c) is based solely on distance transform does
not generate satisfactory results, as the spatial regis-
tration distance and color distribution distances do not

change across the image in the same manner. The non-
uniform relation of the colors and the spatial distances
do not allow the use of constant measures across the im-
age. In particular, if a global constant λ is used, often the
generated layer includes large amount of details which
are not related to the structure, and generates artifacts in
the resulting composition.

To better express the structure in e, we would like to
encourage regions with similar color distributions to c
only when they are within a certain spatial falloff dis-
tance ε (related to the maximal registration error) in the
example leaf image. Moreover, we would like also to
consider the separability of the training leaf layer, and
widen the falloff distance in regions where the train-
ing leaf did not had good color separation for the layer.
Therefore the final spatial distance term is defined as:

F (x, c) = e
−

‖x,c‖2L2
ε2 ·(1−S t (x,c)) (3)

Note that the color distance term S t (x, c) indicates the
color distance on the training leaf t. The effects of this
term can be viewed as a heat map that expresses the
likelihood of each pixel to be selected for the analogous
layer. A heat map of this term is visualized in Figure
3(b), where red indicates high likelihood and blue a low
likelihood for region similarity.

To define the pixels participating in each layer, we set a
threshold value δ automatically by analyzing the train-
ing leaf image and the user selected region c. In par-
ticular, δ is defined by searching for a value that best
reconstructs the layer defined by the user. Let Lt

δ =

{x|D (x, c) < δ} on the training leaf t. Now, we look
for the Lt

δ which maximizes the overlap with the user-
defined layer C:

max


∣∣∣Lt
δ ∩C

∣∣∣∣∣∣∣Lt
δ ∩C

∣∣∣∣ · ∣∣∣Lt
δ ∩C

∣∣∣
 . (4)

This expression yields a distinct maximum that charac-
terizes the method ability to induce the user selection
behavior. In most of the cases the maximal value was in
the range of .7 - .8 which indicate that the layer can be
induced successfully automatically.

In cases where the layer structure is not spatially coher-
ent between the examples and training leaf image, such
as the case of the leaf spots layer, the resulting layer
exhibits a very low number of participating pixels. For
such layers, we would like to reduce the spatial similar-
ity term effect and thus use mainly standard color his-
togram similarity to induce the layer. To accommodate
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(a) (b) (c)

Figure 5: Inducing analogous layers from a training exemplar. The upper row, shows the training leaf layers defined
by the user, whereas the lower shows the resulting induced layer. (a) show the veins structural layer. (b) shows the
spots nonstructured layer (c) shows the remaining background after removal of the layers)

this, we set the value of λ by examining the resulting
layers overlap. More specifically, we use the percentage
of overlap between layers, divided by the overall layer
size to define its value:

λ = κ ·
⋂

e

L̃e
/⋃

e

L̃e (5)

where κ is a constant set to 1.5 in all of our examples,
and L̃e are the induced layer for exemplar e, using a
liberal definition of:

L̃e =
{
x|S e (x, c) < 0.1 and ‖x, c‖2L2 < 2ε

}
. (6)

An example of the layers overlap is shown in Figure 6.
An example of layer induction without structure coher-
ence is shown in Figure 5 (b).

After the extraction of each layer, we apply a standard
inpainting by example method, to complete the leaf tex-
ture, in pixels which participate in the layer. The com-
pletion of the layer allows to use the remaining leaf tex-
ture and structure for the following layers. An example
of the remaining leaf is shown in Figure 7

5. Synthesis

To generate a diverse set of leaves, we apply three tech-
niques: (i) fusing layers from different examples, (ii)

Figure 6: Structural layers. The induced vein-layers
(left) and spots-layer (right) overlap (blue indicates non
overlapping areas, and the red marks regions which are
not overlapping). The veins-layers overlap indicates
it is a highly structural layer whereas the spots-layers
non-overlap indicates it is non-structural. The overlap
area is used to determine the value of λ.

randomly warping each of the layers, and (iii) warping
the complete composition back by selecting an inverse
warp in the convex hull of the preliminary registration
warps.

First, we select an inpainted background layer taken
from one of the examples and apply to it a random warp
as suggested in [4, 13]. The warp is defined to be suf-
ficiently smooth and small, and should not exceed the
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(a) (b) (c)

Figure 7: Removing the layer participating pixels, generates a new image that can be analyzed in further layers. (a)
shows the original leaf, (b) without its veins layer, and (c) after the removal of its spots layer.

initial registration error. Next we fuse additional layers
to the background layer using the similarity term D as a
blending weight normalized per pixel across all the lay-
ers. Each layer is slightly warped in same manner as
described above but with a different random warp. We
use the layer spatial structure (shown in Figure 6) as an
indicator, for the warp magnitude.

Figure 8: A visualization of the warping process. left:
three exemplar warp fields W−1 (x) (here each in dif-
ferent color channels). Middle: The warp coefficients
map, pixel colors represents the corresponding exem-
plar warp weight. Right: The resulting warp field.

The composition of the layers yields a brand new struc-
tural texture aligned to the training leaf image. This re-
sult then needs to be warped back toward the shape of
the example leaf images to produce a variety of shapes
rather than of texture. Each of the exemplar leaf i is as-
sociated with the aligning field Wi that initially aligned
it to the training leaf image. To generate a random
shape, we use a linear combination of the inverse of
these warps, denoted by W−1

i . To blend these fields, we
define a discrete map ai (x) of coefficients vectors such
that

∑
i

ai = 1 to guarantee a convex combination. The

blend of warps W−1 is defined by:

W−1 (x) =
∑

i

ai (x) ·W−1
i (x) . (7)

The discrete map ai (x) of the coefficients is constructed
by a small set of random coefficients, blurred with a low
pass Gaussian. The coefficients are normalized for each
pixel x. The generated map for three examples is il-
lustrated in Figure 8, where each of the RGB channels
shows the values of different coefficients in the map.
As a final step to the synthesis, we apply the texture
correction step, described in Section 3, which alleviates
warping artifacts in the image.

6. Results and Limitations

We’ve implemented structural layering using Matlab
and applied it on various leaf classes. The execution
time of our method for a leaf class with 4 exemplar
leaves (Each with 2M pixels images) takes several min-
utes on a 2GHz Intel Pentium M CPU with 1GB of
memory where the time consuming are non-rigid reg-
istration and the layer inpainting. Defining the example
leaf layers, is done manually by applying around 10-15
short scribbles per layer for each leaf class, using a stan-
dard lazy snapping based interface [27]. Our results are
shown in Figure 9.

In all our experiments the user segmented only a sin-
gle training leaf, to define the layers. In particular in
the leaves set, we defined vein and 2-3 colored spots
layers, some of which were found to be structural lay-
ers. The color histograms were calculated over a small
neighborhood Ne(x) of 8X8 pixels and ε used in all of
the examples was 40 pixels.
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Correct order for the layers, is important for the success
of our method, as it removes and induces the layers one
at a time. Therefore, the results of leaves in which the
selected order is not correct, or when layers are inter-
mixed, may reduce the realism of the resulting leaves.
The large structure scale variance holds an additional
challenge for our method. The problem of detecting and
inducing the structure is hierarchical in nature - Cur-
rently, the user scribbles highlight only the larger veins,
whereas selecting each and every vein may prove to be
non feasible. Therefore we actually infer layers which
include the structure up to a certain scale and may cause
artifacts in the finer details of the result. A possible di-
rection extending our method would be to first extend
the user selections, in a hierarchical manner, and to con-
sider this extension during the inference of the layers.
Such a method may also require stronger assumptions
on the automatic registration misalignments.

Our method does requires some domain knowledge for
determining the number of layers and their types. Nev-
ertheless, this knowledge is not the result of botanic
rules, and is only guided by visual examination of
the leaves, and determinating which structural textures
should be used. The composition of multiple layers, and
objects which are constructed from several component
introduce new challenges that are currently not handled.
While this method can be applied to each component,
the alignment as well as the integration between com-
ponents introduce new challenges in the composition of
the results. Another limitation of our method, is the
conservative warping we apply to the shape. A better
understanding on the shape global structure, can allow
better and more extreme warping to be applied while
still preserving the exemplar shape theme.

7. Conclusions and future research

In this work we presented a technique that deals with
the synthesis of new leaves given a small set of scanned
exemplar leaves. This simple technique can be used to
enhance the realistic look of modeled trees and plants, in
3D models and images. Our method, does not apply any
plant-life domain specific assumptions and as such can
be later extended to other cases which include textures
which interlocks with natural structures. The key point
of our technique is the decomposition of the structural
texture into a series of simplified meaningful layers and
their synthesis.

We believe that the decomposition of structural textures
into layers has more potential beyond the one demon-

strated here. However, such decomposition is a chal-
lenging task that requires more research. The approach
that we took in our work, namely, using user guidance
over a single image has proved to be effective. Further
research is required to extend this principle to a broader
spectrum of images, shapes, and applications, such as
dynamic creation of photorealistic objects to enrich 3D
virtual worlds, methods for blending various structures,
not only textures, and in being able to better blend dif-
ferent classes of complex objects to generate a vari-
ety novel instances of specific classes. This technique
makes a an additional step towards solving the general
problem of creating a large and rich variety of similar
instances from a given small set of examples.
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